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The phase differencew(y) for a vortex at a line Josephson junction in a thin film attenuates at large
distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant
values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices
distributed along the junction with the line densityw8(y)/2p. We study the integral equation forw(y) and
show that the phase is sensitive to the ratiol /L, wherel 5lJ

2/lL , L52lL
2/d, lL, andlJ are the London and

Josephson penetration depths, andd is the film thickness. Forl !L, the vortex ‘‘core’’ of the sizel is nearly
temperature independent, while the phase ‘‘tail’’ scales asAlL/y25lJA2lL /d/y2; i.e., it diverges asT
→Tc . For l @L, both the core and the tail have nearly the same characteristic lengthAlL.

DOI: 10.1103/PhysRevB.63.144501 PACS number~s!: 74.50.1r, 74.76.2w
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I. INTRODUCTION

Recent interest in Josephson junctions in superconduc
films has been driven by experiments probing the proper
of grain boundaries and, in particular, the order param
symmetry.1–4 In these experiments, the junction plane w
normal to the film faces~unlike traditional thin-film large-
area Josephson junctions in which the junction plane is
allel to the faces of two films deposited on top of each oth!.
The junctions in fact are lines separating two thin-film ban
touching only along the edges. The Josephson vortice
such boundaries are quite different from those at fami
bulk junctions, because the stray magnetic field of a vor
results in an integral equation governing the pha
distribution;5 i.e., the problem becomesnonlocal~as opposed
to the well studiedlocal sine-Gordon equation for junction
between bulk superconductors!. The theory of thin-film junc-
tions is just emerging; there have been no attempts mad
connect the phase difference at the junction line with
measurable field outside the film. In fact, the data obtai
on films are commonly analyzed with the help of bulk fo
mulas; see, e.g., Refs. 1 and 3. One of the motivations for
present work was to fill in this missing link.

In the following section we describe the approach we e
ploy for thin films and demonstrate it by solving the we
known problem of the Pearl vortex.6 Besides the transpar
ency and some advantages in providing analytic results
the fields in real space, the method can be readily applie
the problem of a thin-film junction. This is done in the ne
section, where we rederive the integral equation of Mints a
Snapiro5 for the phase differencew at the junction line, and
establish the relation between the phase and the measu
outside magnetic field. The theory contains two characte
tic lengths: one is related to physical properties of
junction,
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l 5
cf0

16p2 j clL
2

5
lJ

2

lL
, ~1!

wherelJ is the Josephson length of a junction made of b
banks of the same material and with the same critical cur
density j c , and lL is the London penetration depth of th
banks. The other length is that of Pearl which describes
film:

L5
2lL

2

d
, ~2!

with d being the film thickness.
In the next section we study the distribution of the pha

differencew(y) along the junction. We show that at larg
distances the phase approaches the limiting values of 0
2p obeying a power law:

w~y→`!'2p2
2lL

y2
, ~3!

w~y→2`!'
2lL

y2
. ~4!

This constitutes a major difference from the phase distri
tion in bulk junctions, wherew(y) approaches exponentiall
the limiting values at infinities. We argue that this behav
is prescribed by the stray field outside the film. As is se
from Eqs.~3! and ~4!, the characteristic length scale for th
large-distance phase variation isAlL.

We then consider the asymptotic behavior of the phas
two limiting cases. We show that forl !L, the central part of
the Josephson vortex~the core! is of a sizel which is nearly
temperature independent. Since the phase tail has a s
AlL(T), the vortex structure changes withT. Unlike Joseph-
©2001 The American Physical Society01-1
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KOGAN, DOBROVITSKI, CLEM, MAWATARI, AND MINTS PHYSICAL REVIEW B 63 144501
son vortices in bulk junctions, in thin films the phase dist
bution is not a universal function of coordinates with
unique temperature dependent length scale. Instead this
tribution is described by two lengths, the ratio of which isT
dependent.

In applications, the lengthl may reach a micron size
while the Pearl lengthL might not exceedlL by much.
Hence, the limitl @L is also of interest. We show that in th
case the scale of the phase variation in the core is of the s
order as in the phase tail; i.e., it isAlL. This is done with the
help of a variational technique.

In Section IV we provide examples ofw(y) obtained by
solving numerically the integral equation in accordance w
our asymptotic and variational estimates.

II. THIN FILMS

As was stressed by Pearl,6 a large contribution to the en
ergy of a vortex in a thin film comes from the stray fields.
fact, the problem of a vortex in a thin film is reduced to th
of the field distribution in free space subject to certa
boundary conditions at the film surface.7 Since curlh
5div h50 outside, one can introduce a scalar potential
the outsidefield:

h5¹c, ¹2c50. ~5!

Consider a thin film situated atz50. The general form of
the potential which vanishes atz→1` of the empty upper
half-space is

c~r ,z!5E d2k

~2p!2
c~k! eik•r2kz, ~6!

with k5(kx ,ky), r5(x,y), and k5uku. Here c(k) is the
two-dimensional~2D! Fourier transform ofc(r ,z50). In the
lower half-space we have to replacez by 2z in Eq. ~6!.

Let the film thicknessd be small relative to the bulk pen
etration depth of the film materiallL ; for simplicity, the
latter is assumed isotropic. For a vortex atr50, the London
equations for the film interior read:

h1
4plL

2

c
curl j5f0ẑd~r !, ~7!

where ẑ is the unit vector along the vortex axis. Averagin
over the thicknessd, we obtain

hz1
2pL

c
curlzg5f0d~r !, ~8!

whereg(r ) is the sheet current density.
Since all derivatives]/]z are large relative to the tangen

tial ]/]r , the Maxwell equation curlh54p j /c is reduced to
conditions relating the sheet current to discontinuities of
tangential field:

4p

c
gx5hy

22hy
1,

4p

c
gy5hx

12hx
2 . ~9!
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-

is-

me

h

t

r

e

Here the superscripts6 stand for the upper and lower face
of the film, z56d/2.

If the environments of the upper and lower half-spaces
identical, we havehx,y

2 52hx,y
1 and

2p

c
gx52hy

1 ,
2p

c
gy5hx

1 . ~10!

In this case we can consider only the upper half-space
omit the subscript1 by the field components.

We substitute Eq.~10! into Eq. ~8! and use divh50:

hz2L
]hz

]z
5f0d~r !. ~11!

Applying the 2D Fourier transform and recalling thathz(k)
52kc(k) for the upper half-space, we obtain:

cP~k!52
f0

k~11kL!
; ~12!

the superscriptP is added for convenience of reference to t
Pearl vortex. The distribution of the potentialc everywhere
and, in particular, at the film surface follow readily:

cP~r ,z50!52f0E d2k

4p2

eik•r

k~11kL!

52
f0

2p E
0

`dk J0~kr !

11kL

5
f0

4L FY0S r

L D2H0S r

L D G , ~13!

where we have used Ref. 11, 6.562.2. Here,H0 ,Y0 are
Struve and second-kind Bessel functions; their difference
well studied; see Ref. 8. The field distribution in real space
the film surface is given in Appendix A.

III. THIN-FILM JUNCTION

Let a thin film have a line junction along they axis.
The London equation everywhere on the film except

junction reads:

hz1
2pL

c
curlz g50, xÞ0. ~14!

At the junction linex50, the currentgy is discontinuous.
One can write for the wholex,y plane:

hz1
2pL

c
curlz g5 f ~y! d~x!, ~15!

where the functionf (y) is still to be determined. To this end
integrate Eq.~15! over the area within the contour followin
the junction banks alongx560 and crossing the junction a
y1 andy2; see Fig. 1. The magnetic flux through this conto
is zero, and we obtain:
1-2
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JOSEPHSON JUNCTION IN A THIN FILM PHYSICAL REVIEW B63 144501
2pL

c E
y1

y2
@gy~10,y!2gy~20,y!# dy5E

y1

y2
f ~y! dy

~16!

for any y1 andy2. This gives:

2pL

c
@gy~10,y!2gy~20,y!#5 f ~y!. ~17!

We now use the London relation

g52
cf0

4p2L
S ¹u1

2p

f0
AD , ~18!

and the definition of the gauge invariant phase difference

w~y!5u~20,y!2u~10,y!2
2p

f0
E

20

10

dx Ax~x,y! ~19!

to obtain

dw

dy
5

4p2L

cf0
@gy~10,y!2gy~20,y!#. ~20!

Equations~17! and ~20! now yield:

f ~y!5
f0

2p
w 8~y!. ~21!

Thus, we have instead of Eq.~14!:

hz1
2pL

c
curlzg5

f0

2p
d~x!

dw

dy
. ~22!

This equation serves as the boundary condition for
Laplace problem of the outside field.

As in the Pearl problem, we first rewrite Eq.~22! replac-
ing the sheet currents with tangential fields according to
~10! and using divh50:

hz2L
]hz

]z
5

f0

2p
d~x!

dw

dy
, ~23!

The 2D Fourier transform now yields

2~k1k2L!c~k!5
f0

2p
w̃8~ky!, ~24!

where w̃8(ky) is the Fourier transform ofdw/dy. Thus we
have:

FIG. 1. The junction is shown by a thick solid line. The dash
line shows the contour used to obtain Eq.~16!.
14450
e

q.

c~k!52
f0 w̃8~ky!

2pk~11kL!
. ~25!

This gives the outside field distribution in terms of the y
unknown phase differencew.

One can write Eq.~25! as c(k)5w̃ 8(ky)c
P(k)/2p,

wherecP(k) for the Pearl vortex is given in Eq.~12!. This
suggests that convolution argument might be useful in re
ing the field of the junction to that of Pearl vortices. To th
end, we take

c~r ,z!52E d2k

~2p!2

f0 w̃8~ky!e2kz

2pk~11kL!
eik•r, ~26!

substitute here

w̃8~ky!5E
2`

`

dsw8~s! e2 ikys, ~27!

2
f0e2kz

k~11kL!
52E d2r 8cP~r 8,z!e2 ik•r8, ~28!

and, after integration overk, obtain

c~x,y,z!5E
2`

`

ds
w 8~s!

2p
cP~x,y2s,z!. ~29!

Thus, the field of the Josephson junction is a superpositio
fields of Pearl vortices distributed along the junction with t
line densityw 8(y)/2p.

This remarkable conclusion could have been made on
basis of comparison of Eqs.~8! and~15! which suggests tha
the Pearl solution forhz at the film surfaceis the Green’s
function for hz(r ,0) for arbitrary sources, in our cas
w 8(y)d(x)/2p. The result~29! is more general, since it per
tains to all components of the field everywhere outside
film, the surface included. It is worth noting that for bu
junctions, a similar result has been obtained by Gurevich:
field in the junction is a superposition of fields of Abrikoso
vortices distributed along the junction with the line dens
w 8(y)/2p.9

To obtain an equation forw(y), we write:

j cd sinw~y!5gx~0,y!52
c

2p
hy

1~0,y!

52
ic

2p E d2k

4p2
kyc~k!eikyy

5
cf0

4p2 E d2k

4p2

w̃ 9~ky!

k~11kL!
eikyy,

~30!

where Eq.~25! has been used. We now substitute the inve
transforms

w̃ 9~ky!5E
2`

`

dy w 9~y! e2 ikyy,
1-3
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4L

k~11kL!
5E d2r e2 ik•r FH0S r

L D2Y0S r

L D G ~31!

into Eq. ~30! and integrate overk ~which is equivalent to
utilizing the convolution theorem!. We obtain:

sinw~y!5
l

2 E
2`

`

dsw 9~s! QS uy2su
L D ,

l 5
cf0

16p2 j clL
2

, Q~w!5H0~w!2Y0~w!. ~32!

This integral equation for the phase has been obtained
Mints and Snapiro using a different technique.5

Although both H0(w) and Y0(w) oscillate, the kernel
Q(w) decreases monotonically. This is seen from the in
gral representation:8

Q~w!5
2

p E
0

`

dt
e2wt

A11t2
. ~33!

At small arguments,H0}w2 while Y0(w) diverges:

Q~w→0!'2
2

p S ln
w

2
1g D , ~34!

whereg is the Euler constant. For largew, only small values
of t contribute to the integral~33!, and we obtain:8

Q~w!;2/pw. ~35!

With better than 9% accuracy, the kernel can be appro
mated by a simple function:

Q~w!'
2

p
ln

w11

w
, ~36!

which gives correct leading-order asymptotics atw→0 and
w→`.

Thus, the equation for the phase contains two indepen
lengthsl andL. If L is chosen as a unit length, the equati
acquires the form

sinw~u!5mE
2`

`

dv w 9~v !Q~ uu2vu!, ~37!

m5 l /2L, ~38!

which shows that only the ratio of these lengths is releva
Hereafter, we use the notationy,s for coordinates in com-
mon units, whereas the variablesu5y/L, v5s/L will be
kept dimensionless. When needed we will use also vari
rescaled variables denoting them asj,h.

The solutionw(y) should satisfy certain conditions aty
→6`. Since the Josephson currentgx(0,y)}sinw should
vanish at infinities, we can choosew(1`)52p and
w(2`)50. At large distances

2p

c
gx~0,y!52hy~0,y!'2

f0

2py2 signy, ~39!
14450
by
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which means that there the vortex fluxf0 is distributed uni-
formly over the solid angle 2p. We then obtain foruyu→`:

sinw5
gx

j cd
'2

2lL

y2
signy. ~40!

The relations given in Eqs.~3! and~4! immediately follow. It
is worth recalling that in the bulk junctions the phasew
54 tan21(ey/lJ) approaches the limiting values at infinitie
ase2uyu/lJ.

Another relation follows from fluxoid quantization, whic
states that the total flux crossing the film isf0. Since the
total flux is *d2rhz(r )5hz(k50) we have

2kc~k!uk→05
f0w̃ 8~ky!

2p~11kL!
U

k→0

5f0 , ~41!

which implies that asky→0,

w̃ 8~ky!52p, w̃ 9~ky!50. ~42!

By splitting the integration domain in Eq.~37! into
v,u andv.u, we rearrange it to the form:

sinw~u!5mE
0

`

dv Q~v !@w 9~v1u!2w 9~v2u!#,

~43!

where it was assumed thatw 8(v) is an even andw 9(v) is an
odd function ofv. This form shows thatw(0)5p.

In bulk junctions the vortex fieldhz at the junction plane
is related to the gradient of the phase difference:

hz~0,y!5
f0

4plL
w8~y! ~44!

~the junction thickness is assumed small relative tolL). In
thin-film junctions this relation does not hold. Instead, w
have, combining Eqs.~17!, ~21!, and~10!,

hx~10,y,0!2hx~20,y,0!5
f0

2pL
w 8~y!. ~45!

By symmetryhx(10,y,0)52hx(20,y,0); therefore,

hx~10,y,0!5
f0

4pL
w 8~y!. ~46!

In principle, all fields and currents can be calculated w
the help of Eq.~25!. Since due to the flux quantizatio
w̃ 8(ky50)52p, Eq. ~42!, the integrals*2`

` dy can be
evaluated without actual knowledge ofw(y). In particular, it
is easily shown that

E
2`

`

c~x,y,z! dy5E
2`

`

cP~x,y,z! dy, ~47!

which implies that similar relations hold for*2`
` dy of the

field components.
1-4
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A. Asymptotic solution for l ÕL™1

The lengthl has a remarkable property of being weak
temperature dependent.10 Indeed, asT approachesTc , the
product j clL

2 is constant becausej c}D2}(Tc2T), while
lL

2}1/(Tc2T). On the other hand, the Pearl lengthL}lL
2

}1/(Tc2T) and diverges atTc . Therefore, asT→Tc , the
ratio l /L→0. Also, this ratio might be small for sufficientl
thin films for anyT. Since the exact solution of the integr
Eq. ~37! is not available, the search of an approximate res
in the limit m→0 is well justified.

It is worth noting that similar to the standard~bulk! Jo-
sephson junction, the phasew varies rapidly only near the
vortex center aty50 ~within the ‘‘Josephson core’’! and the
change is slow outside this domain. We will see that
domain of rapid change is of size;m!1, whereas in the
rest of the junction the phase varies as a power law. T
suggests employing an asymptotic procedure utilizing t
different length scales.12

Within this method, one looks for the solution of the for

w5 (
n50

wn5 (
n50

mn~cn1tn!, m5 l /2L!1, ~48!

where the functionscn(u) andtn(u) approximate the behav
ior of w within the core and in thetail, respectively, andu
5y/L. In particular, this implies imposing the corre
boundary conditions atu50 only upon functionsc(u),
whereas the conditions at̀ ’s should be obeyed only by
contributionst(u). Still, neither should diverge in the do
main of the other~thus providing a uniform asymptotic con
vergence of the so constructed approximation!. Besides, all
wn should have the correct symmetry (wn8 must be an even
andwn9 an odd function ofu).

We expect the core to occupy a domain of the sizem ~or
l in common units!, an assumption to be confirmed. To fin
an equation forc0(u), we introduce ‘‘stretched’’ variables

j5
u

m
, h5

v
m

. ~49!

One can sett0(u)[0 and obtain:

sinc0~j!5E
2`

`

dh Q~muj2hu!
d2c0

dh2 . ~50!

For m→0, we can use the asymptotic form~34! of the kernel
for small arguments. Sincec09(h) is odd in h, the constant
terms in the kernel~34! yield zero after integration, and w
obtain

sinc0~j!52
2

pE2`

`

dh lnuj2hu
d2c0

dh2 . ~51!

This equation has an exact solution13,9,5

c0~j!52 tan21~j/2!1p. ~52!

Note that by construction, this formula approximates the
tual solution in the core; although the boundary conditions
infinities and at zero are satisfied, the asymptotic behavio
14450
lt

e

is
o

-
t

of

c0(j) at large distances, e.g.,c0(j→2`);1/j, disagrees
with requirements~3! and ~4!. Therefore, we proceed to th
next approximation:

w5w01w15c01m~ t11c1! ~53!

and substitute this in Eq.~37!:

sinc01w1 cosc05mE
2`

`

dv
d2c0

dv2 Q~ uu2vu!

1mE
2`

`

dv
d2w1

dv2 Q~ uu2vu!. ~54!

We now use Eq.~51! to rewrite this as:

t1 cosc02mE
2`

`

dv
d2t1

dv2 Q~ uu2vu!

5E
2`

`

dv
d2c0

dv2 FQ~ uu2vu!1
2

p
lnuu2vuG ,

~55!

where we took into account that by designc1!t1 at large
distances. In the limitm→0, the integral at the left-hand sid
contains an extra factorm and, therefore, can be disregarde
whereas

dc0

du
5

4m

4m21u2U
m→0

52pd~u!. ~56!

Hence, for j@m, where cosc05(j224)/(j214)'1, we
obtain:

t152p
dQ~ uuu!

duuu
1

4

uuu
signu. ~57!

Thus, at this stage of the expansion we have:

w5w01mt152 tan21
u

2m
1p12pm

dQ~ uuu!
du

1
4m

u
.

~58!

The last term here compensates both the ‘‘wrong’’ behav
of 2 tan21(u/2m) at large distances and the divergence
Q8(uuu) at u50. One can see that magnetostatics requ
ments~3! and ~4! are now satisfied.

One should note, however, that while having the corr
behavior at large distances,w01mt1 acquires a finite discon
tinuity at the origin:

~w01mt1!u5605p64m. ~59!

This mismatch is proportional to the small parameterm and,
in principle, could be cured by the core contributionc1. We
omit this difficult calculation, because our major goal of e
tablishing the characteristic lengths of the phase variatio
already achieved. Near the vortex center we have:

w~y→0!5p1
2y

l
, ~60!
1-5
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whereas at large distances we have confirmed asympt
~3! and ~4!. In other words,l is the characteristic length
within the core, whereas at large distances the scale isAlL.

B. The casel ÕLš1

The lengthl}1/j c depends on the junction quality and
often large. It may exceed considerably the Pearl lengthL;
this is the case in many experimental situations.3 It is of
interest to consider Eq.~37! in the limit m→`.

Since sinw,1 at the LHS of Eq.~37!, the equation can be
satisfied only ifw9→0, i.e., if w is nearly linear inu in a
broad domain adjacent tou50. In physical terms, this mean
that the vortex core is likely to be large. Out of the core,w is
close to the limiting values of 0 and 2p at infinities. To
‘‘shrink’’ the core domain we introduce new variables:

j5u/Am, h5v/Am. ~61!

Equation~37! now takes the form:

sinw~j!5Am E
2`

`

dh
d2w

dh2
Q~Am uj2hu!. ~62!

In the limit uju→`, we can replace the kernelQ(z) with the
large argument asymptotics~35!. As a result, the paramete
m drops off~this is precisely why the scaling factor has be
chosen as 1/Am):

sinw0~j!'E
2`

` dh w09~h!

uj2hu

'
1

uju E2`

`

dh w09~h!S 11
h

j
1 . . . D'2

2p

ujuj
;

~63!

we have integrated by partshw09 and used w09(2h)
52w09(h). This result coincides with requirements~3! and
~4!.

The problem of the core structure can be addresse
follows. The functional, minimization of which leads to E
~37! for the phase, reads:

W$w%5E
2`

`

du~12cosw!

1
m

2E2`

`

du w8~u!E
2`

`

dv w8~v !Q~ uu2vu!.

~64!

It is shown in Appendix B that~within a constant factor! W
is in fact the total energy consisting of the Josephson,
netic, and magnetic contributions. We can now choose a
of trial functions w0(u) containing a variational paramete
which we callL0; the functions should be linear inu at short
distances. Substituting these functions in Eq.~64! we find
W(L0) minimization of which gives the best value forL0 for
a given set.

As an example of this procedure we choose
14450
ics

as

i-
et

w~u!52 tan21~u/L0!1p, ~65!

which satisfies the boundary conditions at infinities and v
ies asp12u/L0 near the origin. After the calculation out
lined in Appendix C, we obtain a relation betweenL0 and the
parameterm:

2m5
pL0~114L0

2!

p14L0 ln 2L0
. ~66!

It is seen that form!1, L0 must be small, too. Likewise
largem requireL0@1. The limiting cases are:

2m5L0 , m!1, ~67!

2m5
pL0

2

ln 2L0
, m@1. ~68!

IV. NUMERICAL RESULTS

We have solved numerically the integral Eq.~32! by an
iterative method. Starting from a certain trial functionw0(y),
we obtain the phase difference afteri 11 iterations as

w i 11~y!5w i~y!1AD$w i~y!%, ~69!

D$w~y!%[2sinw~y!1
l

2 E
2`

1`

dsw9~s!QS uy2su
L D ,

~70!

where A is a constant. Equation~37! is equivalent to
D$w(y)%50. If the constantA is small enough to stabilize
the iterative procedure, theuD$w i(y)%u becomes smaller for
larger i. The solutionuD$w i(y)%u,e with an arbitrary accu-
racy 0,e!1 is obtained by iterating the procedure un
uD$w i(y)%u becomes less thane.

The open circles of Fig. 2 show the results of numeri
solution of Eq.~37! for the phase differencew(y8) with y8
5y/AlL and l /L50.01. The solid curve is calculated a
cording to the approximation~52!. It is worth observing that
the approximation is not only good for smally; it is still
fairly good for AlL,y,4AlL ~see the inset! and deterio-
rates slowly at large distances. As we will see below,
large distance behavior has little effect on integrated qua
ties such as the total vortex energy, mainly because the
sephson currents at these distances are exceedingly sm

Figure 3 shows numerical solutions forl /L
50.01,0.1,1,10, and 100. One sees that the slopew8(y) at
y50 is suppressed; i.e., the vortex ‘‘core’’ expands w
increasing ratiol /L.

To illustrate the core expansion with increasingl /L we
plot in Fig. 4 the slopesdw/dy8 at the origin obtained from
the numerical~‘‘exact’’ ! solutions~open circles! along with
the slopes calculated using Eq.~66! obtained using the varia
tional procedure described above~solid curve!. We see that
the trial functions~65! reproduce wellw8(0) for small m
5 l /2L, as they should because these functions are clos
the actualw(y) for this case. It is worth noting, howeve
that even for largem the ansatz~65! provides a reasonabl
estimate for the slopew8(0).
1-6
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As is shown in Appendix B, the total energy of a Josep
son vortex in a thin film reads:

E5
f0

2

16p3l
W5

f0
2

8p2L

W~m!

4pm
. ~71!

Here, the prefactorf0
2/8p2L is a natural energy scale be

cause the self-energy of a Pearl vortex is given by this p
actor @multiplied by ln(L/j) with j being the coherence
length#. We have calculatedE numerically using the trial
function ~65! with a too slow 1/y asymptotics; we tried also
the bulk soliton 4 tan21@exp(u/L0)#, which decays at large
distances faster than the needed 1/y2. For each trial function,

FIG. 2. The phase differencew versus y85y/AlL for l /L
50.01 orm50.005. For this and the following plots,AlL is chosen
as unit of length for convenience of comparison. The open circ
are obtained by solving numerically the integral Eq.~37!. The solid
curve is the approximation~52!, which reads in terms ofy8 asw0

52 tan21(y8/A2m)1p. The inset shows the phase fory8.1 or for
y.AlL. The dashed curve is the standard bulk solitonwb

54 tan21@exp(y8/A2m)# which has the same slope at the origi
but approaches the value of 2p exponentially rapidly asy8→`.

FIG. 3. Numerical solutionsw(y8), y85y/AlL5uAL/ l , of Eq.
~37! for l /L50.01~open circles!, 0.1, 1, 10, and 100~crosses!. The
inset (l /L51) shows that the approximation~52!, the solid curve,
which is good forl /L50.01 fails for l /L51.
14450
-

f-

we foundL0 which minimizes the energy. Then we eval
atedE numerically using the exact kernelQ. Figure 5 shows
that these two approximations yield nearly the same en
gies; the relative difference between them is plotted in
inset and shows that the thin film ansatz yields lower en
gies form!1, whereas the bulk ansatz is better for largem.

V. SUMMARY

To summarize, we reiterate the following points:
The field associated with a Josephson vortex is a su

position of fields of Pearl vortices distributed along the jun
tion with the line densityw8(y)/2p.

The Josephson vortex in thin films extends to much lar
distances than in the bulk due to the (L` /y)2 decay of the

s

FIG. 4. The slopesw8(y850) for the set ofm5 l /2L shown in
Fig. 3 obtained by solving numerically Eq.~37! ~open circles!. The
solid line is obtained with the help of the variational result~66!.

FIG. 5. The energyE of Eq. ~71! in units of f0
2/8p2L as a

function of m5 l /2L evaluated for the film ansatzw
52 tan21(u/L0)1p with L0 chosen to minimize the energy func
tional ~64!. The inset shows the relative differenceD5(E
2Eb)/Eb betweenE and the energyEb calculated in the same wa
with the bulk ansatzwb54 tan21 exp(u/L0).
1-7
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phase difference at large distances. This power law is
posed by the magnetostatics of the stray fields outside an
such is the same for any film thickness~as long asd!lJ and
thez dependence of the phase can be disregarded!. The char-
acteristic lengthL` for the phase attenuation at large d
tances is

L`'AlL;lJAlL

d
. ~72!

Hence, for moderately thin films (d;lL), the lengthL` is of
the order of the bulk Josephson length.

The characteristic lengthL0 at small distances~the core
size! is l for l !L as is seen from Eq.~52!. This is the case
in very thin films and for any film thickness close enough
Tc . Thus, forl !L, the Josephson vortex is characterized
two lengths,L`5AlL at large distances andL05 l at short
ones. These two lengths have differentT dependencies, an
therefore the vortex structure changes with temperat
Hence, the situation in films is distinctly different from th
in bulk junctions, where the structure is universal for allT
and is characterized by a single lengthlJ(T).

For l @L, the characteristic length at all distances is of t
same order:

L0'L`'AlL. ~73!

The results obtained in this work for the thin-film limi
d!lL , should hold also for thicker films as long as one c
disregard thez dependence of the phase. Without going in
formal details of the difficult problem of a junction in a sla
of finite thickness, we may guess that thez dependence ofw
is weak whend!lJ , sincelJ is the shortest length at whic
the phase can vary (lJ is assumed to exceedlL). This makes
our results applicable to experimental situations as thos
Ref. 3 where junctions in YBCO films withlL'0.15 mm
andlJ;1 mm have been studied.
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APPENDIX A

The componenthz at the film surface is

hz~r ,0!5
f0

2pL H 1

r
2

p

2L FH0S r

L D2Y0S r

L D G J . ~A1!

We have forr !L:
14450
-
as

y

e.

e

n

of

e
t
i-

f
-
e
e

hz~r ,0!5
f0

2pL r F11
r

L
lnS r

L D1OS r

L D G . ~A2!

It is interesting to note that the field in this domain diverg
faster than in the bulk vortex forr !lL , wherehz} ln(r/lL).
For r @L, one can use the asymptotic expansion~12.1.30! of
Ref. 8:

hz~r ,0!5
f0L

2p r 3 F12OS L2

r 2 D G . ~A3!

The tangential component at the film surface is

hr~r ,0!5
]c

]r
5

f0

4pL2 FH1S r

L D2Y1S r

L D2
2

pG . ~A4!

The asymptotics are readily obtained:

hr~r ,0!5
f0

pLr F12
r

L
2

r 2

2L2
ln

r

2L
1OS L2

r 2 D G ~A5!

for r !L, and

hr~r ,0!5
f0

2pr 2 F12
3L2

r 2
1OS L4

r 4 D G ~A6!

for r @L. As expected, the behavior at large distances c
responds to the Coulomb field of a point ‘‘charge’’ creatin
the fluxf0 in a solid angle 2p. Note also the 1/r divergence
of hr at r→0.

APPENDIX B

The Josephson coupling energy is

EJ5
f0

2

16p3l
E

2`

` dy

L
~12cosw!. ~B1!

The magnetic field energy in the upper half-space is
pressed in terms of the potentialc:

E h2
dV

8p
5E ¹•~hc!

dV

8p
52E d2r

8p
hz~r ,0!c~r ,0!

5
1

8p E d2k

4p2
k c~k!c~2k!. ~B2!

The total field energyEF is twice this amount. The kinetic
energyEK of the supercurrents is the integral over the fi
volume of the quantity 2plL

2 j 2/c25pLg2/c2d. Since ac-
cording to Eqs.~10! g25c2(hx

21hy
2)/4p2 (hx,y are taken at

z50), we find readily:

EK5
L

4p E d2k

4p2
k2c~k!c~2k!. ~B3!

It is now straightforward to show with the help of Eqs.~25!,
~27!, and~31! that the total energy
1-8
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E5EJ1EF1EK5
f0

2

16p3l
W, ~B4!

whereW is given in Eq.~64!.

APPENDIX C

The first integral in Eq.~64! is easily evaluated for the
ansatz~65!:

W152pL0 . ~C1!

One can estimate the contributionW2 of the double integral
as follows. Since for the ansatz~65! w8(u)52L0 /(u21L0

2),
we have

W252mL0
2 E E du dv Q~ uu2vu!

~L0
21u2!~L0

21v2!

516mL0
2 E E ds dt Q~ utu!

@4L0
21~s1t !2#@4L0

21~s2t !2#
.

~C2!
T

.

e
s.

y

14450
Here, all integrals are from2` to ` and we have change
variables:s5u1v, t5u2v. After integration overs one
obtains:

W258pmL0E
0

` dt Q~ t !

4L0
21t2

. ~C3!

Further analytical progress is difficult to make, and we res
to the approximation~36!:

W258mE
0

` dw

11w2
ln

2wL011

2wL0
. ~C4!

We now minimizeW5W11W2 with respect toL0 and
obtain the relation~66! betweenL0 andm. Numerical com-
parison shows thatm(L0) so obtained differs by less than 3%
from the result of using the exact kernelQ in Eq. ~C3!.
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